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Abstract
The synchrosqueezing wavelet transform (SWT) reallocates the wavelet transform values to different
points, hence produces a sharp spectral decomposition for the input signal. The SWT method was
widely used for de-noising, spectral decomposition, etc. In this paper, a new synchrosqueezing
method was proposed based on short time Fourier transform. The proposed method reassigns the
short time Fourier transform values to different points, thus produces a concentrated time–frequency
map. Furthermore, the proposed method has an inverse formula, which allows the reconstruction of
the input signal from its spectral decomposition. Examples showed that the proposed method is
effective for revealing the time–frequency characterizations of non-stationary signals.
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Introduction

Time–frequency distribution is a powerful tool for non-stationary
signal analysis, which was widely used in seismic data inter-
pretation (Castagna et al 2003, Reine et al 2009, Chen et al 2014,
Liu et al 2016). Conventional time–frequency methods are either
‘linear’ or ‘quadratic’. For example, short time Fourier transform
(STFT) (Cohen 1989), wavelet transform (WT) (Mallat 1989),
and S-transform (ST) (Stockwell et al 1996), are linear. These
linear methods pick up sections of the input signal with windows
moving along the time axis. The linear methods were widely
used in wide range of applications, however, the Fourier trans-
form of the windowed section usually generates spurious fre-
quencies, and these frequencies make the true time–frequency
map unclear (Tary et al 2014). The Wigner–Ville transform
and its variants, such as the Cohen class are quadratic. Quadratic
methods produce interference terms and make the time–
frequency densities negative, thus generate misleading results.
Furthermore, the inversions for the quadratic methods are less
straightforward (Daubechies et al 2011, Huang et al 2015).

The empirical mode decomposition (EMD) (Huang
et al 1998), was introduced in the late 1990s, aims to extract
symmetric, narrow-band waveforms called intrinsic mode
functions (IMF) in a data-driven manner. The EMD method was
widely used in signal processing. However, the EMD suffers
from mode mixing and splitting problems. In order to solve the
above problems, alternative methods were proposed based on
EMD such as ensemble EMD (EEMD) (Wu and Huang 2009),
and complete ensemble empirical decomposition (CEEMD)
(Torres et al 2011). In spite of its usefulness in a wide range of
applications, the EMD method and its variants lack firm math-
ematical foundations. The synchrosqueezing wavelet transform
(SWT) was recently proposed (Daubechies et al 2011), with a
rigorous theoretical foundation, this method captures the philo-
sophy of the EMD method but uses a different method to
construct its IMF. Auger et al (2013) showed the SWT can be
viewed as a reassignment method, this method sharpens the
time–frequency map of the wavelet transform by reallocating its
values to different points. Herrera et al (2014), Chen et al (2014)
applied the SWT method to seismic data analysis. Syn-
chrosqueezing method can be used by many classical time–
frequency methods in order to get concentrated time–frequency
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representations. For example, the synchrosqueezing S-transform
(Huang et al 2016, 2017), the matching synchrosqueezing
wavelet transform (Wang et al 2016), the nonlinear squeezing
time–frequency transform (Wang et al 2015), and the second-
order synchrosqueezing transform (Oberlin et al 2015), syn-
chrosqueezing method also be used as filter banks, subsampling
and processing (Holighaus et al 2016).

The spectrogram can be viewed as a variation of the
Wigner–Ville distribution (Auger et al 2013). The energies
spread over the instantaneous frequencies due to the win-
dowing process. In order to get a concentrated time–fre-
quency map, Auger and Flandrin (1995) proposed the
reassignment method, which reallocates its values to different
points. Auger et al (2012) also presented a new Levenberg–

Marquardt method, which makes the reassignment method
adjustable. The synchrosqueezing method with the advantage
of inversion has received new attention (Oberlin et al 2014).

In this paper, a new time–frequency method named syn-
chrosqueezing short time Fourier transform (SSTFT) was pro-
posed. The proposed method is a combination of the STFT and
the synchrosqueezing method. The synchrosqueezing process
squeezes the energies of STFT to the instantaneous frequencies
and therefore generates a concentrated time–frequency map
(Mallat 2009). Firstly, the forward and inverse transforms were
given. The proofs of the forward and inverse transforms are
different from those of Oberlin et al (2014), but similar to the
proofs of Daubechies et al (2011) and Huang et al (2016).
Numerical results showed that the proposed method is effective

Figure 1. Synthetic signal.

Figure 2. Components of the synthetic signal of figure 1.
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for revealing the characterizations of non-stationary signals.
Finally, the proposed method was used for seismic data
interpretation.

Theorem

Synchrosqueezing short time Fourier transform (SSTFT)

The SWT was used to analyze a wide variety of signals. The
appendix gives a short introduction to the SWT algorithm.

For its concentration property, the synchrosqueezing method
was used by other transforms to generate concentrated time–
frequency representations. For example the synchrosqueezing
S-transform (Huang et al 2016, 2017). In the following, the
synchrosqueezing method is used to sharpen the STFT map,
and therefore, generates a concentrated time–frequency map
named SSTFT.

Figure 3. Time–frequency map for the synthetic signal of figure 1: (a)
time–frequency map using local attribute. (b) Time–frequency map
using SWT, with a 64-point length Morlet wavelet. (c) Time–frequency
map using SSTFT, with a 64-point length Gaussian window.

Figure 4. Synthetic signal.

Figure 5. Time–frequency map for the synthetic signal of figure 4:
(a) time–frequency map using local attribute. (b) Time–frequency
map using SWT, with a 64-point length Morlet wavelet. (c) Time–
frequency map using SSTFT, with a 64-point length Gaussian
window.

Figure 6. Bat signal.
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The forward SSTFT

The STFT of a signal x(t) is (Auger et al 2013)

W x t g t t, e e d , 1x
ti iòw t t= -wt w t-

-¥

¥
- -( ) ( ) ( ) ( )( )

where g t t-( ) is the complex conjugate of the window
function g(t−τ), ω is the angular frequency, t is the time and
τ is the time translation. Let G(t, ω)=g(t)eiωt, then

equation (1) can be rewritten as

W x t G t t, e , d . 2x
i òw t t w= -wt-

-¥

¥
( ) ( ) ( ) ( )

The spectrogram is W ,x
2w t ( ) , which can be viewed as the

2D smoothing of the Wigner–Ville distribution of the ana-
lyzed signal by the Wigner–Ville distribution of the analyzing
window (Auger et al 2013). The smoothing process will
decrease the resolution of STFT. For example a sinusoidal
f t e ti 0= x( ) , the Fourier transform of which is the Dirac
f 2 0w pd w x= - ( ) ( ), has a STFT (Mallat 2009):

W g, e . 3f 0
i 0w t w x= - t w x- -( ) ( ) ( )( )

For the STFT of the sinusoidal function, its energies are
spread over the interval ,0 02 2

x s x s- +w w[ ], where
2

sw is the
standard deviation of the function g w ( ). Whereas, the STFT
of a Dirac function f (t)=δ(t− u0) is

W g u, e . 4f
u

0
i 0w t t= - w-( ) ( ) ( )

For the Dirac function mentioned above, its energies are
spread over in the time interval u u, ,0 0t t

2 2
s s- +[ ] where t

2
s

is the standard deviation of the of the function g(u)

Figure 7. Time–frequency map for the bat signal of figure 6: (a) time–
frequency map using short time Fourier transform, with a 64-point
length Gaussian window. (b) Time–frequency map using Oberlin’s
method, with a 64-point length Gaussian window. (c) Time–frequency
map using SSTFT, with a 64-point length Gaussian window.

Figure 8. A trace from a marine survey.

Figure 9. Time–frequency map for the trace of figure 8: (a) time–
frequency map using local attribute. (b) Time–frequency map using
SWT, with a 64-point Morlet Wavelet. (c) Time–frequency map
using SSTFT, with a 64-point Gaussian window.
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In order to improve the time–frequency resolution, the
synchrosqueezing method was used with the STFT to gen-
erate a concentrated time–frequency representation. Similar to
the SWT, for any W , 0x w t ¹( ) , a candidate instantaneous
frequency for the signal x is following. According to Plan-
cherel’s theorem, equation (2) can be written as

W x g,
1

2
e e d , 5x

i iòw t
p

x x w x= -wt xt-

-¥

¥
( ) ( ) ( ) ( )

where ξ is the angular frequency, x x ( ) is the Fourier trans-
form of x(t), g x ( ) is the Fourier transform of g. To motivate
the idea, let x t A tcos 0w=( ) ( ), its Fourier transform is

x A . 60 0x p d x w d x w= - + + ( ) [ ( ) ( )] ( )

Take a window g that is concentrated on the positive fre-
quency axis: g 0x =( ) for ξ<0. Substituting equation (6)
into (5) yields

W
A

g,
2

e . 7x 0
i 0w t w w= - w w t- -( ) ( ) ( )( )

For any (ω, τ) with W , 0x w t ¹( ) , a candidate instantaneous
frequency ,xw w t ( ) for the signal x can be computed by

W W, i , , . 8x x x
1w w t w t
t

w t w= -
¶
¶

+- ( ) ( ( )) ( ( )) ( )

If the frequency variables ,w w are discretized i.e. Wx(ω, τ)
was computed only at discrete value ωk, where

ωk−ωk−1=(Δ ω)k The SSTFT is given by

9

SW W, , e .x l x k k
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This is the forward transform. The energies of the STFT
be squeezed to the instantaneous frequencies locations
according to the equation (9) in order to get a concentrated
time–frequency representation. The SSTFT is a combination
of the STFT and the synchrosqueezing method.

The inverse SSTFT

The following argument shows that the signal can be recon-
structed.
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Suppose the window function is real, we derive that
g gw w- = ( ) ( ). Equation (10) can be written as
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If we let E g dg ò w w=
-¥

+¥
 ( ) , the signal can be reconstructed

by
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The following is the discrete reconstruction formula. From
equations (9) and (12) we have
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Figure 10. Reconstruction errors of SWT (the blue line) and SSTFT
(the red line) for the trace of figure 8.

Figure 11. Real seismic data.
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Relations with Oberlin’s Fourier based
synchrosqueezing transform

We underline the difference between the proposed method
and Oberlin’s Fourier based synchrosqueezing transform
(Oberlin et al 2014).

The Oberlin’s method has a threshold γ, the values of the
STFT greater than the threshold can pass. The proposed
method uses all the values of the STFT.

The compressing windows of the Oberlin’s method are δ
dependent, which usually are the Gaussian windows. The
proposed method uses rectangle windows, which are
constant.

The inversion of the Oberlin’s method is incomplete,
some data may have been removed by the threshold. The
inversion of the proposed method is complete since it uses all
the data.

Examples

Synthetic signals and real field data are used to test the pro-
posed method.

Benchmark examples

Firstly, a simple synthetic signal is used to test the proposed
method. Figure 1 is a synthetic signal s(t), which consists of
three components s1(t), s2(t), s3(t) as displayed in figure 2.

s t s t s t s t
s t t t

s t t t
s t t t t

,
2 0.5 cos 2 cos 10

e cos 40 2.0
2 0.5 cos 60 sin 2 . 14

t

1 2 3

1

2
0.001 2

3

p p
p

p p

= + +
= + ´
= ´ -
= + ´ +

-

( ) ( ) ( ) ( )
( ) ( ( )) ( )
( ) ( )
( ) ( ( )) ( ( )) ( )

The SWT (Daubechies et al 2011), and the local attribute
method (Liu et al 2011), are used for comparative analyses. The

Figure 12. Time–frequency cubes for the real data of figure 11: (a) time–frequency using local attribute. (b) Time–frequency using SWT,
with a 64-point length Morlet wavelet. (c) Time–frequency using SSTFT, with a 64-point length Gaussian window.
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local attribute method is a non-stationary time–frequency
method. Figure 3(a) is the time–frequency map using local
attribute method for the synthetic signal of figure 1. The time–
frequency representations of SWT and SSTFT for the synthetic
signal are displayed respectively in figures 3(b) and (c). For the
SWT method, a 64-point length Morlet wavelet was used. For
the SSTFT method, a 64-point length Gaussian window was
used. From the figures, we see that the energies spread over the
instantaneous frequencies locations for the local attribute
method. The SSTFT and the SWT methods squeeze the ener-
gies to the instantaneous frequencies locations.

Figure 4 is another synthetic signal used by (Hou
and Shi 2013). The signal consists of three components
with variable frequencies and amplitudes. Figure 5(a) is the
time–frequency representation using local attribute method.
Figures 5(b) and (c) are time–frequency representations
using respectively the SWT and the proposed method.
All three methods correctly identify the three components.
The proposed SSTFT method squeezes the time–frequency

energies to the instantaneous frequencies locations, which
make a concentrated time–frequency map.

Figure 6 is a 400 samples long recording of a bat chirp
sampled with a sampling period 7 μs. This gives a sampling
rate of 143 kHz. Figures 7(a)–(c) are the time–frequency
representations using STFT, with a 64-point length Gaussian
window, the Oberlin’s synchrosqueezing STFT method
(Oberlin et al 2014), with a 64-point Gaussian window and
the proposed method with a 64-point Gaussian window. From
the figures, we see that the bat chirp signal consists of three
separated components. The Oberlin’s synchrosqueezing
method cannot reveal the high-frequency component.

The last example is a single seismic trace from a marine
survey as displayed in figure 8. Figure 9(a) is the time–fre-
quency map using local attribute method. The time–frequency
representations of SSTFT and SWT for the trace are displayed
respectively in figures 9(b) and (c). From the figures we see
that the SSTFT and SWT methods squeeze the energies to the
instantaneous frequencies locations. From the above figures,

Figure 13. Constant slices for the real data of figure 11. Local attribute method: (a) 20 Hz. (b) 30 Hz. (c) 50 Hz. SWT method: (d) 20 Hz.
(e) 30 Hz. (f) 50 Hz. SSTFT method: (g) 20 Hz. (h) 30 Hz. (i) 50 Hz.
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we can see that the energies for the SWT and SSTFT methods
are not smoothly distributed due to the synchrosqueezing
process. A local Gaussian smooth operator could be imple-
mented to smooth the roughness.

Figure 10 shows the errors of reconstruction. The blue
line is the reconstruction error for SWT method, and the red
line is the error for SSTFT method. Both lines prove that the
two methods are capable of reconstructing the original signal
while keeping a small error.

Real data

Figure 11 is a 2D section from a land survey previously
analyzed by Fomel (2007) and Liu et al (2011). Figures 12(a)
–(c) are the time–frequency cubes using respectively local
attribute method, SWT method, and SSTFT method. The
front panels for the three cubes are the 40 Hz constant slices,
the right panels are the 200th trace time–frequency maps, and
the top panels are 0.6 s time depth time–frequency maps.
All the three methods reveal the time-dependent frequency
response of the seismic data. For the local attribute method
(Liu et al 2011), the deep layers have week signals, whereas,
for the SWT and SSTFT methods have relatively strong
signals for the deep layers. The time–frequency response of

local attribute method is mainly concentrated on the strong
reflection layers, whereas, the time–frequency response are
blended together for the SWT and SSTFT methods. We then
extract the 20, 30 and 50 Hz constant slices for the three
different methods mentioned above. Figures 13(a)–(c) are the
20, 30 and 50 Hz slices for local attribute method,
figures 13(d)–(f) are the 20, 30 and 50 Hz slices for SWT
method, and figures 13(g)–(i) are the 20, 30 and 50 slices for
SSTFT method. From these 20 and 30 Hz constant slices, we
see the energies are more concentrated for SSTFT and local
attribute methods than the SWT method. However, for the
50 Hz constant slices, the energies are more concentrated for
the local attribute method than those of the SWT and SSTFT
methods.

Low-frequency anomalies can be used as hydrocarbon
indicators, which may be attributed to the abnormal high-
frequency attenuation in the gas filled reservoirs (Castagna
et al 2003). The mechanisms for low-frequency anomalies of
hydrocarbon reservoirs are still not clearly understood
(Ebrom 2004, Kazemeini et al 2009). Figures 14(a) and (b)
are the 20 and 50 Hz constant slices of the SSTFT method.
Comparing the slices, a low-frequency anomaly in the top-left
part of the section is apparent indicated by the text box, which
might be viewed as an indicator of the gas presentation
(Castagna et al 2003).

Conclusions

SSTFT is a concentrated version of the STFT, which
improves the time–frequency resolution of the STFT by
synchrosqueezing method. Since seismic signals are non-
stationary, the proposed method can be used as a tool for
spectral anomalies detection, and thus improves the prediction
of oil and gas reservoirs. Further applications include image
processing, de-nosing etc.
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Appendix. Synchrosqueezing wavelet transform

Synchrosqueezing wavelet transform was a special case of
reassignment method (Chassande-Mottin et al 1997, Daubechies
et al 2011, Auger et al 2013), which based on the wavelet
transform with the aim of sharping the time–frequency map by
reallocating the point of computation to the instantaneous

Figure 14. Constant slices for the real data of figure 11: (a) 20 Hz
slice of SSTFT. (b) 50 Hz slice of SSTFT.
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frequency of the input signal. The continuous wavelet transform
of a signal x(t) is defined by (Mallat 2009)

W a b x t a
t b

a
t, d , A.1x

1
2ò y=

-
-¥

¥
⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )

where y is the complex conjugate of a wavelet ψ, a is the scale
variable, and b is the time location. Consider the purely har-
monic signal x t A tcos w=( ) ( ), whose Fourier transform is

x A . A.2x p d x w d x w= - + + ( ) [ ( ) ( )] ( )

By Parseval’s theorem (Mallat 2009), we can rewrite
equation (A.1) as

W a b x a a,
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2
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bi1
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x y x x= x
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where ξ is the angular frequency. Suppose y is an analytical
signal, its frequency contents are positive. Substituting
equation (A.2) into (A.3) yields

W a b
A

a a,
2

e . A.4x
bi1

2y w= w( ) ( ) ( )

Daubechies et al (2011) pointed out that the instantaneous fre-
quency can be computed for ω(a, b) with any (a, b) for which
W a b, 0x ¹( ) by

a b W a b
W a b

b
, i ,
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, A.5x
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the time-scale plane is translated to the time–frequency plane
according to the map a b a a b, , ,w( ) ( ( )). If the discrete
points for the continuous variables a and ω are taken ak, (Δ a)k=
ak −ak−1 and ,l l l l 1w w w wD = - -( ) . We can get the syn-
chrosqueezing wavelet transform based on the above assumption
as (Daubechies et al 2011, Thakur et al 2013),
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We then get the squeezed time–frequency representation by
summing different contributions to the center frequency, which
sharpen the time–frequency map. The following shows that the
signal can be reconstructed after the synchrosqueezing. Assum-
ing C 1

2 0

d
ò y x=y

x
x

¥  ( ) , the reconstruction equation is (Daube-
chies et al 2011),
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where R takes the real part of a complex number. The discrete
reconstruction formula is (Daubechies et al 2011),
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